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Abstract
There is an ongoing debate in the scientific community regarding the nature and role of the mental representations involved 
in solving arithmetic word problems. In this study, we took a closer look at the interplay between mental representations, 
drawing production, and strategy choice. We used dual-strategy isomorphic word problems sharing the same mathematical 
structure, but differing in the entities they mentioned in their problem statement. Due to the non-mathematical knowledge 
attached to these entities, some problems were believed to lead to a specific (cardinal) encoding compatible with one solv-
ing strategy, whereas other problems were thought to foster a different (ordinal) encoding compatible with the other solving 
strategy. We asked 59 children and 52 adults to solve 12 of those arithmetic word problems and to make a diagram of each 
problem. We hypothesized that the diagrams of both groups would display prototypical features indicating either a cardinal 
representation or an ordinal representation, depending on the entities mentioned in the problem statement. Joint analysis of 
the drawing task and the problem-solving task showed that the cardinal and ordinal features of the diagrams are linked with 
the hypothesized semantic properties of the problems and, crucially, with the choice of one solving strategy over another. 
We showed that regardless of their experience, participants’ strategy use depends on their problem representation, which 
is influenced by the non-mathematical information in the problem statement, as revealed in their diagrams. We discuss the 
relevance of drawing tasks for investigating mental representations and fostering mathematical development in school.
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Introduction

Word problem solving is a central component of mathemat-
ics education (Verschaffel et al., 2020). Calculating how 
many eggs are needed to cook an omelet or how long it takes 
for a bathtub to fill up are typical exercises designed to help 
children learn how to use abstract mathematical notions in 
concrete, real-life situations. But how exactly does one pro-
ceed to translate a series of words and sentences describing 
a specific situation into an algorithmic procedure leading 
to the solution? A growing line of research suggests that 

problems are encoded into a mental representation includ-
ing both mathematical and non-mathematical information, 
which is then translated into a solving algorithm (Gros et al., 
2020b). Thus, non-mathematical information about the situ-
ation described in a problem statement would influence its 
mental representation, and learners’ ability to find an appro-
priate solving strategy would depend upon its semantic con-
tent (Gros et al., 2019).

This prediction has led to a new way of investigating 
a foundational distinction in mathematics: the difference 
between the ordinal property of numbers (their rank in an 
ordered list) and their cardinal property (the number of ele-
ments in a set). More specifically, it has been shown that 
the mention of specific daily-life entities within a problem 
statement could be enough to lead learners to construct 
either an ordinal mental representation of the numerical 
situation, or a cardinal representation instead (Gamo et al., 
2010; Gros et al., 2021). For instance, mentioning eleva-
tors moving between floors would make it more likely both 
for lay adults and mathematicians to construct an ordinal 

 * Hippolyte Gros 
 hippolyte.gros@cyu.fr

1 CY Cergy Paris University, Paragraphe Lab, Gennevilliers, 
France

2 Université de Bourgogne, LEAD-CNRS UMR 5022, Dijon, 
France

3 University of Geneva, IDEA Lab, Geneva, Switzerland

http://orcid.org/0000-0002-4151-0715
http://crossmark.crossref.org/dialog/?doi=10.3758/s13421-024-01523-w&domain=pdf


 Memory & Cognition

encoding underlining the order between the different floors. 
On the other hand, mentioning a collection of marbles being 
counted would lead instead to a cardinal encoding of the sit-
uation, focusing for instance on color sets (Gros et al., 2021).

However, these representational differences have only 
been investigated through indirect measures, such as strategy 
use (Gros et al., 2021), response times (Gros et al., 2019), or 
saccadic eye movements (Gros et al., 2020a). Considering 
the ongoing debate regarding the nature of the mental repre-
sentations elicited by arithmetic word problem solving (Bas-
sok, 2001; Daroczy et al., 2015; Gros et al., 2020b; Gvozdic 
& Sander, 2020; Orrantia & Múñez, 2013; Thevenot, 2010; 
Thevenot & Barrouillet, 2015; Verschaffel et al., 2020), it 
seems crucial to gather additional evidence, probing more 
directly into the structure of individuals’ mental representa-
tions of arithmetic word problems. In this study, we pro-
posed to investigate the use of drawing production as a win-
dow into the mental representations of arithmetic problems 
and to analyze their relationship with strategy choice.

Investigating mental representations 
through drawing productions

The idea that different representations are abstracted 
depending on the semantic content of a problem statement 
is compelling in that it provides an account of some key per-
formance differences reported in the literature (e.g., Coquin-
Viennot & Moreau, 2003; De Corte et al., 1985; Gamo et al., 
2010; Hudson, 1983; Martin & Bassok, 2005; Thevenot & 
Oakhill, 2005; see Gros et al., 2020b, for a discussion of 
this argument). However, evaluating the precise structure 
of these representations necessarily requires taking an indi-
rect route, since direct investigation of mental constructs is 
seldom possible. Over the years, cognitive scientists have 
employed a variety of techniques to study individuals' men-
tal representations (Pearson & Kosslyn, 2015). Classical 
examples of indirect measures include reaction times (e.g., 
Shepard & Metzler, 1971), verbal reports (e.g., Ericsson & 
Simon, 1980), self-assessment questionnaires (e.g., Wein-
man et al., 1996), metaphors (e.g., Lakoff & Núñez, 2000), 
gestures (e.g., Fuhrman & Boroditsky, 2010), written state-
ments (e.g., Pinnegar et al., 2011), eye movements (Fourtassi 
et al., 2017), fMRI activation patterns (Lewis-Peacock et al., 
2015), event-related potentials (Bagnoud et al., 2018), or 
typicality ratings (Hebart et al., 2020), to name only a few. 
However, it can be argued that none of these metrics have 
the high-dimensional complexity and richness of drawings 
when it comes to investigating one’s mental representations 
(Bainbridge, 2022). In this paper, we intend to show that 
drawing analysis can help us gain a deeper understanding of 
some crucial differences in the representation of arithmetic 
word problems.

Drawing tasks have been regularly used in the history of 
psychology, notably to perform clinical diagnoses (Agrell 
& Dehlin, 1998; Makuuchi et al., 2003; Shulman, 2000; 
Wechsler, 2009; see Gainotti & Trojano, 2018, for review), 
or to study the affective processes of children and young 
adults (Burgess & Hartman, 1993; Silver, 2009). The visual 
complexity of diagrams has also made it possible to inves-
tigate object and scene representations through drawing 
tasks (e.g., Chamberlain & Wagemans, 2016; Freeman & 
Janikoun, 1972; Kosslyn et al., 1977; see Bainbridge et al., 
2019, for a review). While some authors have raised ques-
tions regarding the difficult interpretation of complex and 
subjective drawings in previous studies (Thomas & Jolley, 
1998), recent years have seen a resurgence of interest in 
drawing-based research, with an increasing number of stud-
ies being conducted and a renewed recognition of its sig-
nificance among the research community (Bainbridge et al., 
2019; Bainbridge, 2022; Long et al., 2018).

Overall, drawing production has been shown to be a 
promising path to investigate the structure of one’s represen-
tation without resorting to explicit verbalization, especially 
among children (Bainbridge, 2022). A well-known example 
comes from Vosniadou and Brewer’s (1992) seminal study 
on conceptual change, in which they elicited drawings from 
third and fifth grade children to study the development of 
their mental representation of the earth. By asking them “can 
you draw a picture of the earth?” and a few follow-up ques-
tions such as “now draw the sky” or “show me where the 
moon and stars go,” they were able to differentiate between, 
for example, children adopting a “flattened sphere” earth 
model, children adopting a hollow sphere model, and chil-
dren adopting a rectangular earth model. Several studies 
have since resorted to drawing tasks to study conceptual 
change among children and adults (e.g., Hobson et al., 2010; 
Mikkilä-Erdmann et al., 2012; Trundle et al., 2007; Ucar 
et al., 2011).

When it comes to mathematics, the use of drawings has 
been a longstanding informal practice for teachers to gain 
insight into children’s conceptual development (Crespo 
& Kyriakides, 2007), yet a comparatively limited number 
of studies have been conducted using systematic drawing 
analysis (Carruthers & Worthington, 2003). Previous works 
have notably used diagram production tasks to look at the 
understanding of geometrical notions (e.g., De Bock et al., 
1998, 2003; Thom & McGarvey, 2015), as well as fraction 
representations (e.g., Tunç-Pekkan, 2015; Westenskow et al., 
2014; Yoshida & Shinmachi, 1999). In the field of math-
ematical problem solving, Cummins (1991) conducted one 
of the first studies using drawing tasks to investigate chil-
dren’s interpretation of arithmetic word problems. In two 
experiments, she probed first-grade children’s interpretation 
of a series of additive word problems involving marbles, 
based on Riley et al.’s (1983) problem typology. She asked 
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the participants to solve the problems and then to draw a 
representation of the marbles in each problem. Her results 
suggested that drawing accuracy was significantly correlated 
to solving performance. Other works have found converging 
evidence that drawing accuracy may predict solving perfor-
mance in mathematics (De Bock et al., 1998; Uesaka et al., 
2010; Van Essen & Hamaker, 1990).

Since this seminal work, a number of studies have 
resorted to drawing tasks to study the mental representation 
of mathematical problems (e.g., Bakar et al., 2016; Barrios 
& Martínez, 2014; Csíkos et al., 2012; Edens & Potter, 2007, 
2008; Reeve, 1996; Rellensmann et al., 2017). For instance, 
Reeve (1996) used a diagram production task to investigate 
children’s conceptual understanding of fractions. He ana-
lyzed to what extent the drawings of Grade 7 and 8 students 
conformed with relevant mathematical principles. He found 
that drawing adherence to the corresponding mathematical 
rules was predictive of their problem-solving performance. 
In a similar perspective, Edens and Potter (2008) instructed 
fourth and fifth graders to solve an arithmetic word problem 
and to make a drawing to help them find the solution. Using 
a custom scale, they graded the extent to which the students’ 
drawings were schematic or pictorial. They showed that the 
construction of schematic drawings was positively correlated 
with solving performance, and that most students (79%) ren-
dered schematic representations. In a similar perspective, 
other studies have found evidence that the degree of abstrac-
tion of an individual’s drawing is correlated with their prob-
lem-solving performance (Hegarty & Kozhevnikov, 1999; 
Rellensmann et al., 2017; Van Garderen & Montague, 2003). 
It should be noted that while these previous studies have 
been able to identify a link between general drawing quali-
ties and solvers’ performance in mathematical word problem 
solving, there appears to be a gap in the literature regarding 
the relationship between the features of a drawing, the con-
tent of a mental representation, and the choice of a solving 
strategy. The current study intends to tackle this question by 
asking participants to solve and draw problems admitting 
several distinct solving strategies.

Insights on problem encoding from strategy choice

Indeed, in addition to drawing analysis, another promising 
path to study learners’ representation of arithmetic word 
problems comes from the study of strategy choice in prob-
lems admitting multiple solving strategies. For instance, 
Thevenot and Oakhill (2005, 2006) worked on a multiple-
step problem-solving task in which the cognitive load was 
manipulated through the range of the problem’s values 
(using either two-digit or three-digit numbers). They showed 
that depending on the magnitude of the values, participants 
used different solving algorithms, thus suggesting that a 
specific representational change had occurred on high-value 

problems. Similarly, when studying arithmetic word prob-
lems, the selection by the participants of one solving strategy 
over another can yield valuable insights into the constructed 
mental representation (De Corte et al., 1985).

In fact, according to the SECO (Semantic Congruence) 
model (Gros et  al., 2020b), strategy choice is directly 
dependent upon the structure of the mental representations 
constructed while attempting to solve a problem. SECO 
predicts that the encoding of arithmetic word problems is 
significantly influenced by the problem’s world semantics 
(the non-mathematical, daily-life knowledge evoked by the 
entities described in the problem statement). This leads 
individuals to construct a mental representation in work-
ing memory, the features of which depend not only on the 
mathematical information in the problem, but also on the 
non-mathematical information attached to the problem state-
ment. SECO predicts that this representation dictates which 
solving strategy can be used by the solver. In other words, 
the non-mathematical information in the problem statement 
may constrain the problem representation and lead to one 
strategy being used over another. Thus, by using word prob-
lems admitting several distinct solving strategies, it should 
be possible to explore the structure of the underlying mental 
representation and to pinpoint the semantic constraints influ-
encing it (Gros et al., 2020b).

A straightforward example of this idea comes from 
Coquin-Viennot and Moreau’s (2003) study on multiplica-
tive problems. They created word problems admitting two 
solving strategies: either a factorization algorithm (e.g., “14 
× (5 + 7)”) or a more costly development algorithm (e.g., 
“14 × 5 + 14 × 7”). When the problem statement mentioned 
different sets of flowers being counted, participants tended 
to use the development procedure. However, when the prob-
lem statement also mentioned that the flowers were put in 
sets to form bouquets, a higher number of participants were 
able to use the factorization strategy instead. More recent 
studies have also used dual-strategy distributive problems 
to assess students’ conceptual knowledge (Scheibling-Sève 
et al., 2020, 2022). In their study, Scheibling-Sève et al. 
(2020) recorded which strategy fourth and fifth graders used 
to solve isomorphic word problems. Their strategy-choice 
analysis made it possible to explore the children’s conceptual 
knowledge about factorization, as well as the influence of 
semantic context in the encoding of distributive word prob-
lems. Similarly, Scheibling-Sève et al. (2022) evaluated the 
efficacy of a school intervention by looking at the range of 
solving strategies that children were able to use after the 
intervention. This focus on solving strategies was also at 
the core of Gvozdic and Sander (2020) study, who asked 
first graders to write down the operation they used to solve 
one-step additive word problems. By analyzing whether 
children used direct subtraction or indirect addition, they 
were able to distinguish which problems were solved using 
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mental simulation, and which were solved using conceptual 
knowledge about mathematical operations instead. Overall, 
multiple-strategy word problems thus appear as a promis-
ing experimental paradigm to use, together with drawing 
analysis, to probe the mental representations of adults and 
children alike.

The issue of cardinality and ordinality

The specific representational differences that we intend to 
study within this paper relate to a fundamental dimension 
of mathematics: the distinction between ordinality and car-
dinality. The concepts of ordinality and cardinality refer to 
two ontological properties of numbers: ordinality pertains 
to their position in an ordered sequence (their rank in an 
ordered list), while cardinality relates to their count value 
(the number of elements within a set). This distinction is 
foundational in mathematics (Dantzig, 1945; Frege, 1984; 
Russell, 1919), particularly in the field of set theory (Dau-
ben, 1990; Suppes, 1972), and research in cognitive psychol-
ogy has demonstrated that it has implications beyond the 
realm of formal mathematics.

From a developmental perspective, children’s understand-
ing of cardinality (i.e., knowing that counting 1-2-3-4 means 
that there are four entities) has been investigated in several 
experimental studies suggesting that children learn to grasp 
the cardinal meaning of numbers over the first few years of 
life (Bermejo, 1996; Le Corre & Carey, 2007; Sarnecka & 
Lee, 2009; Wynn, 1992). This understanding is said to be a 
crucial step in the development of their mathematical cog-
nition (Geary, 2018; Geary et al., 2018; Shusterman et al., 
2016). On the other hand, research on the understanding of 
the ordinal meaning of numbers, seems to point towards a 
later development of the ability to use ordinal labels (i.e., 
“first,” “second,” “third,” and so on) around the fourth and 
fifth years (Fischer & Beckey, 1990; Hund et al., 2021; 
Miller, 2015, 2000). Despite receiving less attention than 
research on cardinality (Goffin & Ansari, 2016), research 
on ordinality has also shown that the understanding of ordi-
nal position was predictive of 5- and 6-year-olds’ arithmetic 
performance (Cheung & Lourenco, 2019).

The comparative development of these two sides of 
numerosity has been under scrutiny in recent years, with 
studies suggesting that the cardinal principle is acquired 
before children are able to use ordinal labels (Baccaglini-
Frank et al., 2020; Colomé & Noël, 2012; Meyer et al., 2016; 
Wasner et al., 2015). Overall, these studies highlight that 
cardinality and ordinality are two crucial notions with dis-
tinct developmental trajectories, and that understanding how 
to use the cardinal and ordinal meanings of numbers is an 
important part of mathematical development.

However, the influence played by the distinction between 
cardinality and ordinality among older children and adults 

engaged in mathematical reasoning of a higher level has 
received very little attention in the field in the past decades 
(Gamo et al., 2010; Verschaffel et al., 1999). Yet, a recent 
study suggested that adults’ mental representation of numer-
ical situations typically fall into one of two categories, on a 
cardinality-ordinality continuum (Gros et al., 2021). We pro-
pose to further investigate this hypothesis by analyzing both 
drawing productions and strategy choice among children and 
adults tasked with solving arithmetic word problems.

Encoding differences

Building upon early works on the solving of ordinal prob-
lems (Verschaffel et al., 1999) as well as on the difference 
between age problems and collection problems (Gamo et al., 
2010), it was proposed that problems sharing the same math-
ematical structure could lead either to a cardinal representa-
tion or to an ordinal representation, depending on the type 
of entities being counted (Gros et al. 2021). Due to the non-
mathematical knowledge associated with specific entities, 
the simple mention of daily-life quantities could be enough 
to tip the scale in favor of one of two possible representa-
tions of the same situation (Gros et al., 2020b). For instance, 
consider the following collection problem:

Paul has five red marbles.
He also has blue marbles.
In total, Paul has 11 marbles.
Jolene has as many blue marbles as Paul, and some 
green marbles.
She has two green marbles less than Paul has red mar-
bles.
How many marbles does Jolene have?

The hypothesis for this problem was that a problem state-
ment involving counting collections of marbles, which have 
no inherent order, would highlight the cardinal nature of the 
numbers used (Gros et al., 2021). Since there is no need to 
arrange the marbles in a specific order, participants should 
tend to view the marbles of different colors as separate, dis-
tinct sets that are grouped together to be added (see Fig. 1 
for a schematic description of their hypothesized mental rep-
resentation). Thus, when solving the problem, participants 
should attempt to determine the total number of marbles 
Jolene has by calculating the two subsets making up her 
total marble counts. They should count the number of blue 
marbles she has and add it to the number of green marbles 
she has. This is done by using a three-step strategy: 11 − 5 
= 6; 5 − 2 = 3; 6 + 3 = 9 (Gros et al., 2021).

On the other hand, consider the following duration 
problem:

Sofia traveled for 5 hours.
Her trip started during the day.
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Sofia arrived at 11 h.
Fred left at the same time as Sofia.
Fred's trip lasted 2 hours less than Sofia's.
What time was it when Fred arrived?

It was hypothesized that this travel problem, which has 
the same mathematical structure as the marble problem but 
involves duration values instead of marble counts, would 
lead participants to perceive the described situation as 
ordered along an axis: a timeline of events. This would be 
due to solvers' knowledge about durations causing them to 
perceive the different travel times in the problem not as parts 
and wholes, but as states and transitions along an ordered 
axis (see Fig. 2 for a schematic description of their hypoth-
esized representation). When considering the problem from 
this perspective, it becomes easier to understand that there 
is no need to calculate the duration of Fred’s travel nor the 
hour of his departure. Instead, since Fred and Sofia left at 
the same time and Fred’s travel was 2 h shorter than Sofia’s, 
it follows that Fred arrived 2 h before Sofia. This ordinal 
representation thus makes it possible for participants to iden-
tify a shorter solving strategy: 11 − 2 = 9, which is seldom 
used by participants when solving the marble problem (Gros 
et al., 2021).

Crucially, both the marble problem and the travel prob-
lem shared the same mathematical structure (see Fig. 3), 
and thus both problems could have been solved indifferently 

with both solving strategies. However, data collected among 
adults showed that participants preferentially use the three-
step strategy on cardinal problems, and the one-step strategy 
on ordinal problems, even when explicitly asked to find the 
solution involving the shortest number of steps (Gros et al., 
2021). Thus, it was proposed that weight problems, price 
problems, and collection problems would all emphasize the 
cardinal nature of numbers and lead to a cardinal encoding, 
due to these quantities usually describing unordered entities. 
On the other hand, duration problems, height problems, and 
number of floors problems (problems with an elevator going 
from one floor to another) would all highlight the ordinal 
property of numbers instead, due to daily-life knowledge 
underlining the intrinsic order of the entities they mention 
(see Gros et al., 2021, for a longer discussion regarding this 
choice). From this point onward, we will refer to “cardinal 
problems” as the problems that have statements that mention 
collections, weights, or prices, and “ordinal problems” as 
the problems that have statements that mention durations, 
heights, or elevators.

Interestingly, similar results have also been observed 
with expert mathematicians who experienced more dif-
ficulty using the one-step strategy on cardinal problems 
than on ordinal problems, even when it was the only avail-
able strategy (Gros et al., 2019). This finding illustrates 
the pervasiveness of encoding effects on one’s ability to 
use a specific solving strategy, and the high cognitive cost 
of switching from one mental representation to another. 
This was interpreted as evidence for the influence of non-
mathematical information on the semantic encoding of 
arithmetic word problems, in line with the predictions of 
the SECO model (Gros et al., 2020b). In the present study, 
we propose to bring new, converging evidence regarding 

Fig. 1  Example of a hypothesized cardinal representation of the mar-
ble problem

Fig. 2  Example of a hypothesized ordinal representation of the travel 
problem

Fig. 3  Deep structure shared by both the marble problem and the 
duration problem
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the perception of cardinality and ordinality in word prob-
lem solving, while at the same time answering a key ques-
tion: how do drawings relate to mental representations and 
solving strategies in the arithmetic reasoning of children 
and adults?

Present study

The current study intends to build upon and contribute to 
several lines of research. First, we aim to leverage the lit-
erature on drawing analysis to propose a systematic analysis 
of cardinality and ordinality in the mental representations 
of arithmetic problems. Second, we mean to go one step 
further than Gros et al.’s (2021) strategy analysis by com-
paring children’s and adults’ strategy choices on the same 
task, using multiple-strategy problems involving cardinal 
and ordinal quantities. Third, and most importantly, we 
propose to investigate how the properties of the drawings 
relate to the hypothesized problem representations and pre-
dict participants’ solving strategies. By crossing information 
gathered from strategy choice with insights extracted from 
drawing production, we expect to get a deeper understanding 
of the semantic determinants of children and adults’ mental 
representations.

In this perspective, we elected to include both lay adults 
and fifth grade students in our sample, since both popula-
tions possess a certain degree of familiarity with arithme-
tic word problem solving and additive reasoning. Despite 
the clear developmental difference between fifth graders 
and adults, the problems presented in Gros et al. (2021) are 
within the realm of difficulty for 11-year-olds (Gamo et al., 
2010), yet remain challenging to adults (Gros et al., 2019). 
We asked both groups to consider a series of 12 problems 
and complete two tasks: solve the problems using as few 
operations as possible, and make a drawing of the problems 
that could help someone else understand and solve it. We 
used the exact same materials and instructions with children 
and adults to make it possible to compare both groups’ pro-
ductions and strategies.

The rationale was that cardinal problems would elicit a 
cardinal encoding that would result in drawings presenting 
features prototypical of a cardinal representation, while also 
leading participants to preferentially use the three-step solv-
ing strategy. On the other hand, we expected that ordinal 
problems would lead to the production of drawings with 
features highlighting the ordinality of the numerical values, 
as well as to a higher rate of one-step solving strategies. 
Finally, we also made the hypothesis that independently 
from the mention of cardinal or ordinal quantities in the 
problem statements, the ordinality rating of the drawings 
would significantly predict the likelihood of participants 
using the one-step strategy.

Methods

Participants

Using the BUCSS R package (v1.2.1; Anderson & Kel-
ley, 2018), a minimum sample size of 45 was determined 
based on results from a previous study using similar mate-
rials (Gros et al., 2021 – Experiment 4), after correction 
for uncertainty and publication bias following Anderson, 
Kelley, and Maxwell’s recommendations (Anderson et al., 
2017). We used a high level of targeted statistical power 
(0.95) to account for the uncertainty linked to the fact that 
previous studies only analyzed participants’ solving strate-
gies, not their drawings’ structural features. Participants 
were recruited from two populations: a group of 59 chil-
dren in fifth grade, recruited among several schools from 
the Paris region (27 girls, Mage = 11.00 years, SD = 0.36), 
and a group of 52 adults from the Paris region (36 women, 
Mage = 26.86 years, SD = 9.72). All participants spoke 
French fluently. None had previously participated in any 
similar experiment.

Materials and procedure

Each participant was presented with a set of 12 different 
problems: six problems using ordinal quantities (“dura-
tion,” “height,” and “elevator” problems, see Table 1) 
and six problems using cardinal quantities (“collection,” 
“price,” and “weight” problems, see Table 2), as defined 
in Gros et al. (2021).

Each participant was given a 13-page booklet. On the 
first page, detailed instructions asked participants to solve 
a series of math problems using as few operations as possi-
ble. It was explained that an operation was defined by two 
operands, an operator, and a result (e.g., 2 + 2 = 4), and 
that they needed to write down any operation they used, 
even if they resorted to mental calculation. Then, it was 
indicated that for each problem, they had to make a dia-
gram meant to “help someone understand the problem and 
solve it.” We used this specific instruction to maximize the 
chances of participants’ producing informative diagrams 
depicting the mathematical relations as they understood 
them. Indeed, previous works have shown that “drawing 
to communicate” stimulates pragmatic inferences that help 
the drawer select the most informative pieces of informa-
tion to include in the drawings (Fan et al., 2020).

The next 12 pages of the booklets were dedicated 
to the 12 problems participants were tasked with solv-
ing. Each page was divided into four sections: first, the 
problem statement was presented, next to it was a "draft" 
space, providing participants with the freedom to work 
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through the problem in their preferred manner. Below, 
there was a "calculations and result" space for recording 
their problem-solving strategies. Finally, the bottom half 
of the page was reserved for a "diagram" space where 
participants were invited to create a schematic drawing 
representing the situation described in the problem. The 
order of problems within the booklets was arranged in 
a pseudorandom sequence, with cardinal and ordinal 
problems alternating on each page. This sequencing was 
designed to enhance the likelihood of participants recog-
nizing the underlying deep structure shared across all the 
problems. Additionally, two versions of the booklets were 
created, each with an inverse problem order, to control for 
potential primacy effects.

Drawing scales

Participants’ diagrams were analyzed using two custom 
scales, designed to evaluate to what extent they featured 
either ordinal or cardinal characteristics. The scales were 
created around the idea that the hypothesized semantic 
encoding of the problems should permeate the participants’ 
drawings and lead to specific features occurring in problems 
sharing a similar encoding. The scales were created prior to 
any collection of data, based on the ontological properties 
of cardinal and ordinal representations, as defined in Gros 
et al. (2021). Each scale included four criteria.

The cardinal scale included four items that were deemed 
typical features of a cardinal representation of the problems 

Table 1  English translation of the cardinal problems used in this study. The numerical values respected the following rule: z < 4 < x < y < 15

Quantity used Problem statement

Weight A bag of pears weighs x kilograms.
It is weighed with a whole cheese.
In total, the weighing scale indicates y kilograms.
The same cheese is weighed with a milk carton.
The milk carton weighs z kilograms less than the bag of pears.
How much does the weighing scale indicate?

Weight Tom takes a Russian dictionary weighing x kilograms.
He also takes a Spanish dictionary.
In total, he is carrying y kilograms of books.
Lucy takes Tom's Spanish dictionary and a German dictionary.
The German dictionary weighs z kilograms less than the Russian dictionary.
How many kilograms is Lucy carrying now?

Price In the first meal on the menu, there is a chocolate cake costing x euros.
The meal also includes an omelet with mushrooms.
In total, the first meal costs y euros.
In the second meal on the menu, there is the same mushroom omelette, and an apple pie.
The apple pie costs z euros less than chocolate cake.
How much does the second meal cost?

Price In the stationery shop, Antony wants to buy a x-euro ruler.
He also wants a notebook.
In total, that will cost him y euros.
Julie wants to buy the same notebook as Antony, and an eraser.
The eraser costs z euros less than the ruler.
How much will Julie have to pay?

Collection Paul has x red marbles.
He also has blue marbles.
In total, Paul has y marbles.
Jolene has as many blue marbles as Paul, and some green marbles.
She has z green marbles less than Paul has red marbles.
How many marbles does Jolene have?

Collection Sarah owns x goldfish.
Her other pets are all iguanas.
In total, she owns y pets.
Bobby is pet-sitting Sarah's iguanas during the holidays, he puts them with the turtles he owns.
Bobby owns z turtles less than Sarah owns goldfish.
How many pets are there at Bobby's during the holidays?
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Table 2  English translation of the ordinal problems used in this study. The numerical values respected the following rule: z < 4 < x < y < 15

Quantity used Problem statement

Duration The construction of the cathedral took x years.
Before constructing it, the plans had to be made.
The construction of the cathedral was completed in year y.
The construction of the castle started at the same time as the construc-

tion of the cathedral.
The construction of the castle took z years less than the construction of 

the cathedral.
When was the construction of the castle completed?

Duration Sofia traveled for x hours.
Her trip started during the day.
Sofia arrived at y.
Fred left at the same time as Sofia.
Fred's trip lasted z hours less than Sofia's.
What time was it when Fred arrived?

Height Slouchy Smurf is x-centimeter tall.
He climbs on a table.
Now he reaches y centimeters.
Grouchy Smurf climbs on the same table as Slouchy Smurf.
Grouchy Smurf is z centimeters shorter than Slouchy Smurf.
What height does Grouchy Smurf reach when he climbs on the table?

Height Obelix's statue is x-meter tall.
It is placed on a pedestal.
Once on the pedestal, it reaches y meters.
Asterix's statue is placed on the same pedestal as Obelix's.
Asterix's statue is z meters shorter than Obelix's.
What height does Asterix's statue reach when placed on the pedestal?

Elevator Naomi takes the elevator and goes up x floors.
She left from the floor where her grandparents live.
She arrives at the y th floor.
Her brother Derek also takes the elevator from their grandparents' floor.
He goes up z floors less than Naomi.
At what floor does Derek arrive?

Elevator Karen takes the elevator and goes up x floors.
She left from the floor where the gym is.
She arrives at the y th floor.
Yohan also takes the elevator from the floor where the gym is.
He goes up z floors less than Karen.
At what floor does Yohan arrive?

Fig. 4  Cardinal drawing scale provided to the independent raters to score the drawings
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(see Fig. 4). Since cardinality refers to the total number of 
elements within a set, regardless of their order, we expected 
cardinal representations to include some or all of the follow-
ing prototypical features: (a) presence of identifiable clusters 
of elements, each expressing a specific value, (b) drawings 
of sets containing several entities, indicative of a group-
based representation, (c) inclusion of sets within each other, 
to account for the part/whole relationships highlighted by a 
cardinal encoding, and (d) explicit correspondence between 
a specific entity and an assigned value. As depicted in Fig. 4, 
we proposed several examples for each of these categories in 
the scoring sheet, so that the raters in charge of scoring the 
drawings would be able to identify the hypothesized features 
without being informed of our hypotheses.

Following the same procedure, the ordinal scale included 
four items involving the most relevant features of what we 
hypothesized to be a prototypically ordinal representation 
(see Fig. 5). Considering the properties of ordinality, we 
predicted that an ordinal representation would include some 
of the following prototypical features: (a) presence of axes 
on which to place different problem values, (b) presence of 
graduations quantifying the numerical distance between two 
values on an axis, (c) side-by-side presentation of different 
axes indicative of value comparisons, and (d) presence of 
intervals denoting a numerical distance between two other 
values.

Importantly, every item in both scales could have been 
used to describe any of the problems in the experiment. For 
instance, it is entirely possible to make a diagram of the 
travel problem using only the cardinal features described in 
the cardinal scale, and it is equally possible to make a dia-
gram of the marble problem using only the features of the 
ordinal scale. Yet, we made the hypothesis that features in 
the cardinal scale would predominantly appear on problems 
meant to elicit a cardinal encoding, whereas features in the 

ordinal scale would predominantly appear on the ordinal 
scale instead.

Double-blind scoring was performed by two independent 
raters who were unaware of the hypotheses being tested. 
The two drawing scales were introduced to them, and they 
were given the opportunity to ask questions about their dif-
ferent criteria and examples. Once they were confident they 
understood the meaning of each of the eight items, they 
were asked to score the entirety of the diagrams produced 
by the participants in both groups. Thus, both rates scored 
each of the 1,332 diagrams on the eight items. After initial 
independent scoring, the two raters reached perfect agree-
ment on 91.01% of cases. The occasional discrepancies were 
due to slight differences in the interpretation of some of 
the scales’ criteria. Notably, one rater was somehow more 
liberal in what constituted an interval during the initial cod-
ing. Yet, after discussion both agreed to a common defini-
tion. Another topic of discussion was raised when one rater 
judged it impossible to have graduations even without an 
axis, while the other considered some diagrams to feature 
graduations without any drawn axis. They decided to settle 
on the latter perspective. Cohen’s Kappa coefficient for inter-
rater reliability was calculated to determine consistency 
among raters based on their initial rating. The result (κ = 
.726, SE = 0.012) expressed substantial agreement between 
raters, according to Landis and Koch’s typology (Landis 
& Koch, 1977). After discussion between themselves and 
without the authors, the raters managed to decide on com-
mon rules for ambiguous cases. They reached 100% agree-
ment on their second round of scoring. Based on the raters’ 
final assessment of which criteria were met by each drawing, 
two scores were calculated: a cardinal drawing score, and 
an ordinal drawing score. The cardinal score (from 0 to 4) 
indicated how many of the four cardinal criteria were met 
by the drawings (see Fig. 4). The ordinal score (from 0 to 4) 

Fig. 5  Ordinal drawing scale provided to the independent raters to score the drawings
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indicated how many of the four ordinal criteria were met by 
the drawings (see Fig. 5).

Strategy choice interpretation

Participants’ solving strategies were extracted from their 
self-report of the operations they had performed. A problem 
was considered as correctly solved when the correct result 
came with the appropriate calculations. The strategies lead-
ing to success were categorized either as a one-step strategy 
or as a three-step strategy. When the written operations were 
correct and the written solution was within ± 1 of the cor-
rect result, this was deemed a calculation error and problems 
were still considered as correctly solved.

When participants wrote down operations that did not 
provide the answer to the problem, or when they simply 
provided an erroneous answer, their response was labeled 
“Error.” Because participants were instructed to write down 
every operation they performed, and because numerical val-
ues were chosen so that they could not lead to two identical 
values being calculated using two distinct strategies (i.e. x + 
y ≠ z − y and so on), it was always possible to trace back the 
strategies used by participants as long as they wrote down 
the solution and at least one of the operations performed. 
If participants forgot to report one of the first two opera-
tions of the three-step strategy (i.e., they forgot either “Part 
1 − Difference = Part 3” or “ Whole 1 − Part 1 = Part 2”) 
but still reported the result of said operation and used it to 
perform the final operation of the three-step strategy (i.e. 
“Part 3 + Part 2 = Whole 2”), then the response was labeled 
as a three-step strategy. The rare cases in which the solution 

was given with no explanation were considered as incorrect 
(which occurred in less than 1% of the trials).

Results

Diagram analysis

Both children and adults engaged with the drawing task by 
producing different diagrams displaying varied characteris-
tics. Sample diagrams of cardinal problems by children and 
adults are attached in the supplemental materials (Fig. A). 
Similarly, examples of children and adults’ productions for 
ordinal problems can be seen in the Online Supplemental 
Materials (OSM; Fig. B). Most diagrams included some 
schematic elements, as well as numerical values and text 
labels (see diagrams reported in OSM Fig. A and Fig. B). 
Some diagrams were particularly depictive with, for 
instance, adults drawing each individual turtle at Bobby’s 
house (see second diagram in OSM Fig. A). Others were 
mostly abstract, with no illustrative element other than the 
schematic representation of the relations between the numer-
ical values (see second diagram in OSM Fig. B).

We analyzed the diagrams produced for each problem 
by each participant, using the 4-point cardinal scale and the 
4-point ordinal scale. Overall, there was no major surprise 
in the diagrams, and while the rules behind the rating scales 
had to be further specified by the raters to decide on ambigu-
ous drawings, the two rating scales captured a wide variety 
of cases, each item appearing on average in 14.40% of the 
drawings. The two criteria that were most often found in 
the participants’ diagrams were “presence of one-to-one 

Fig. 6  Children’s and adults’ mean cardinal and ordinal scores depending on the type of problems (problems with cardinal quantities versus 
problems with ordinal entities). Vertical bars denote 0.95 confidence intervals. *** p < .001, ** p < .01 Tukey-adjusted least squares means
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correspondences” (32.58% of the drawings) and “presence 
of axes” (19.97% of the drawings). The two least used items 
in the scale were “presence of embedded sets” (3.00% of the 
drawings) and “presence of intervals” (6.76% of the draw-
ings). Figure 6 details the mean cardinal and ordinal scores 
of the drawings depending on the type of quantity used in 
the problems, for each population. For each rating scale, we 
compared the scores attributed to participants’ drawings on 
cardinal and on ordinal problems.

Ordinal score analysis

Adults’ drawings of ordinal problems had a higher ordinal 
score on average (M = 1.43, SD = 1.20) than their drawings 
of cardinal problems (M = 0.04, SD = 0.24). Similarly, chil-
dren’s drawings of ordinal problems were also rated higher 
on the ordinal scale on average (M = 0.55, SD = 0.93) than 
their drawings of cardinal problems (M = 0.07, SD = 0.39). 
To evaluate the statistical significance of this difference, 
we used a linear mixed model with the ordinal score as the 
dependent measure. We included experimental group (chil-
dren vs. adults) and type of problem (cardinal problem vs. 
ordinal problem) as fixed effects, and we added participants 
and problem statements as random effects to account for the 
repeated measures in the experimental design. As predicted, 
there was a significant effect of problem type on the ordi-
nal score attributed to the drawings (F = 109.86, p < .001; 
Type III SS ANOVA). Pairwise comparisons using Tukey-
adjusted LS-means revealed that this difference was signifi-
cant for children (t(13.4) = 5.19, p < .001) as well as for 
adults (t(14.4) = 14.64, p < .001). Interestingly, there was 
also a main effect of the group of participants (children vs. 

adults) (F = 24.58, p < .001; Type III SS ANOVA). Indeed, 
children’s drawings were rated lower on average on the ordi-
nal scale (M = 0.31, SD = 0.76) than adults’ drawings (M = 
0.73, SD = 1.11). Finally, there was a significant interaction 
between the experimental group (children vs. adults) and 
the type of problems (cardinal vs. ordinal) on the ordinal 
score (F = 153.60, p < .001; Type III SS ANOVA). This 
interaction may be due to the fact that children’s diagrams 
tended to be less complex than adults’, which led to them 
scoring lower than adults on the ordinality score for ordinal 
problems, but not for cardinal problems, due to a floor effect 
on cardinal problems.

To better understand the extent to which each of the 
four criteria associated with the ordinal scale accounted 
for the observed differences between cardinal and ordinal 
problems, we also looked at the role played by each item 
in the overall score. Figure 7 details how often each of the 
four items of the ordinal scale was present in a participant’s 
drawing. Interestingly, the item that was most often found 
on the drawings of ordinal problems was item (a) (presence 
of axes), which appeared in 58.65% of adults’ drawings of 
ordinal problems and in 20.90% of children’s drawings of 
ordinal problems. Conversely, the least observed item was 
item (d) (presence of intervals), which was only present in 
16.67% of adults’ drawings of ordinal problems and 5.65% 
of children’s drawings of the same problems.

We created generalized mixed models using each crite-
rion as a binary outcome, group and type of problem as fixed 
effects, and participants as well as problem statements as 
random effects to evaluate whether each criterion appeared 
more frequently on ordinal than on cardinal problems. 
Results confirmed that the nature of the problems (ordinal 

Fig. 7  Rate of presence in participants’ drawings of each of the ordinal scale’s four criteria
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vs. cardinal) had a significant effect on the presence of the 
four ordinal criteria, be it (a) axes (Z = 8.79, p < .001), (b) 
graduations (Z = 4.33, p < .001), (c) compared axes (Z = 
5.70, p < .001) or (d) intervals (Z = 5.91, p < .001).

For further analysis of the presence of each cardinal cri-
terion for the three cardinal quantities and the three ordinal 
quantities, see Fig. C in the OSM. The distribution of the 
four ordinal criteria were mostly stable across the three ordi-
nal quantities, with the exception of the “presence of gradu-
ations” criterion, which was more often met on drawings of 
elevator problems (47.30% of cases) than on drawings of 
duration problems (12.61% of cases) or of height problems 
(5.41% of cases). This discrepancy may be due to the fact 
that in elevator problems, each unit (and thus each gradu-
ation) corresponds to a distinct, easy to draw entity (each 
floor on the building). Drawing the floors and drawing the 
graduations are relatively similar processes, so one might 
have helped the other, which would explain the high rate of 
graduations in diagrams of elevator problems. Apart from 
this criterion, there was no noticeably unusual pattern in 
the distribution of criteria across quantities. The most reli-
able criterion to assess ordinality appears to be “presence of 
axes,” since it appeared in 36.94% of drawings of elevator 
problems, in 31.98% of duration problems, and in 46.85% 
of height problems, while it was hardly present in drawings 
of cardinal problems (1.35% overall).

Cardinal score analysis

Regarding the cardinal score attributed to participants draw-
ings, we had made the hypothesis that participants’ drawings 
would display more typically cardinal features on cardinal 
problems than on ordinal problems. Indeed, adults’ drawings 

of cardinal problems had a higher cardinal score on average 
(M = 1.51, SD = 1.09) than their drawings of ordinal prob-
lems (M = 0.37, SD = 0.52). Similarly, children’s drawings 
of cardinal problems were also rated higher on average on 
the cardinal scale (M = 0.64, SD = 0.89) than their drawings 
of ordinal problems (M = 0.13, SD = 0.35). We used a linear 
mixed model to evaluate the factors influencing the cardinal 
score, with experimental group (children vs. adults) and type 
of problem (cardinal problem vs. ordinal problem) as fixed 
effects, and participants and problem statements as random 
effects. As hypothesized, there was a significant effect of 
problem type on the drawings’ cardinal score (F = 46.25, p 
< .001; Type III SS ANOVA). Pairwise comparisons using 
Tukey-adjusted LS-means revealed that this difference was 
significant for children (t(11.8) = 4.13, p < .01) as well as 
for adults (t(12.3) = 9.16, p < .001). Additionally, there 
was a main effect of the group of participants (children vs. 
adults) (F = 57.14, p < .001; Type III SS ANOVA). Indeed, 
as with the ordinal score, children’s drawings tended to score 
lower on average on the cardinal scale (M = 0.39, SD = 
0.72), compared to adults’ productions (M = 0.94, SD = 
1.03). Finally, there was a significant interaction between 
the experimental group (children vs. adults) and the type 
of problems (cardinal vs. ordinal) on the cardinal score as 
well (F = 74.07, p < .001; Type III SS ANOVA). As with 
the ordinal score, we attributed this interaction to the lower 
complexity of children’s drawings, impacting the cardinal 
score of cardinal problems more heavily than the cardinal 
score of ordinal problems, due to a floor effect on the latter.

We also computed the proportion of each of the four cri-
teria by problem type in participants’ drawings (see Fig. 8). 
Interestingly, the role played by each criterion appeared to be 
less homogeneous than for the ordinal scale. Namely, while 

Fig. 8  Rate of presence in participants’ drawings of each of the four criteria on the cardinal scale
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the “clusters” and “sets” criteria tended to follow a similar 
pattern of moderate frequency on cardinal problems (20.72% 
and 35.14%, respectively) and nil-absence on ordinal prob-
lems (0.45% and 1.50%, respectively), the two remaining 
criteria displayed a different behavior. The “embedded sets” 
criterion was only identified in a limited number of few par-
ticipants’ productions. Even on cardinal problems, adults’ 
drawings displayed embedded sets in only 10.58% of cases, 
while children used them in just 1.69% of cardinal problems. 
This low score may be attributed to the fact that this crite-
rion is dependent upon another one (there needs to be “sets” 
in order to have “embedded sets”). Finally, the “one-to-one 
correspondence” criterion appeared to be less typical of car-
dinal drawings than we expected. Indeed, while the criterion 
was met in by a majority of adults’ drawings of cardinal 
problems (69.23%), their drawings of ordinal problems also 
included this feature in 19.49% of cases, as it was sometimes 
used to assign numerical values to graduations labels.

To evaluate the impact of the type of problem on each 
cardinal criterion, we created generalized mixed models 
using each criterion as a binary outcome. We included type 
of problem and experimental group as fixed effects, and we 
used participants and problem statements as random effects 
to account for the repeated measures in the experiment. 
Results showed that, regardless of the aforementioned varia-
tions between items, each individual criterion in the cardinal 
scale was significantly more present on drawings of cardinal 
problems than on drawings of ordinal problems, be they (a) 
clusters of identical elements (Z = 2.80, p < .01), (b) sets (Z 
= 8.23, p < .001), (c) embedded sets (Z = 3.75, p < .001), or 
(d) one-to-one correspondences (Z = 6.26, p < .001).

For further analysis of the presence of each ordinal cri-
terion for the three cardinal quantities and the three ordinal 
quantities in the problems, see Fig. D in the OSM.

As with the ordinal scale, the distributions of the four 
cardinal criteria were mostly stable across the three cardinal 
quantities, with the exception of the criterion “presence of 
clusters of identical elements.” Indeed, this criterion was 
often met on drawings of collection problems (48.65%), but 
more rarely on drawings of weight problems (10.81%) or 
of price problems (2.70%). This may be due to the fact that 
drawing each marble in the problem, for instance, comes 
more naturally than drawing each kilogram corresponding 
to the weight of a wheel of cheese. Except for this item, there 
was no unexpected pattern in the distribution of cardinal 
criteria across quantities. The “presence of sets” criterion, 
however, seemed to be a good measure of cardinality across 
all quantities, since it was present in 43.69% of collections 
problems, in 31.53% of weight problems, and in 30.18% of 
height problems, while almost never featured in drawings of 
ordinal problems (0.45% overall).

Thus, adults and fifth graders alike were more likely to 
use ordinal features (axes, graduations, etc.) than cardinal 

features (clusters, sets, etc.) on ordinal problems, and con-
versely on cardinal problems. In sum, drawing analysis 
shows that in both populations, the mention of ordinal (or 
respectively cardinal) quantities in the problem statements 
seems to result in representations featuring a higher number 
of ordinal (respectively cardinal) features. For a quantity-by-
quantity comparison of the cardinal and ordinal scores, see 
Fig. E in the OSM.

Strategy analysis

Second, we had made the prediction that problems with 
ordinal quantities would facilitate the use of the one-step 
strategy compared to problems with cardinal quantities. 
Across both groups, we evaluated whether participants did 
use the one-step strategy more often on problems involving 
ordinal quantities than on problems involving cardinal quan-
tities. Figure 9 details the participants’ use of each strategy 
depending on the type of quantity featured in the problems.

We used a generalized mixed model with the use of the 
one-step strategy as its binary outcome to evaluate the fac-
tors influencing participants’ strategies. We included the 
type of problem (cardinal vs. ordinal) and the experimental 
group (children vs. adults) as fixed effects, and we used par-
ticipants and problem statements as random effects account-
ing for the repeated measures of the design. Results revealed 
a main effect of problem type on the rate of use of the one-
step strategy (Z = 4.25, p < .001), with a higher rate for 
ordinal problems (M = 43.99%) than for cardinal problems 
(M = 16.97%), as hypothesized. There was also a main effect 
of the experimental group (Z = 4.57, p < .001), since adults 
were more likely than children to find the one-step solving 
strategy.

Finally, there was an interaction between problem type 
and experimental group (Z = 3.75, p < .001), which suggests 
that fifth graders’ use of the one-step solving strategy was 
more impacted by the cardinal versus ordinal nature of the 
problems than that of adults. Indeed, while their use of the 
one-step strategy was relatively high on ordinal problems (M 
= 38.98%), their performance substantially dropped on car-
dinal problems (M = 7.63%). LS pairwise comparisons com-
puted using the Emmeans R package (v1.8.9; Lenth et al., 
2023) showed that this difference was statistically significant 
(z-ratio = 7.16, p < .001). On the other hand, the difference 
between the two types of problems was less important for 
adults, although it remained significant. Indeed, their mean 
rate of use of the one-step strategy was higher on ordinal 
problems (M = 49.68%) than on cardinal problems (M = 
27.56%); z-ratio = 4.25, p < .001. Thus, our hypothesis was 
confirmed among both populations, despite adults perform-
ing better than children, especially on cardinal problems.

In addition, we also looked at the distribution of three-
step strategies, to investigate whether its use was also linked 
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to the cardinal versus ordinal nature of the problems. Using 
a generalized mixed model similar to the one for the one-
step strategy, we looked at the effects of problem type and 
experimental group on participants’ responses. Again, we 
found a main effect of problem type (Z = 3.27, p < .01), a 
main effect of experimental group (Z = 4.38, p < .001), and 
an interaction between the two (Z = 2.34, p < .05). Least-
squares pairwise comparisons calculated with Emmeans 
(v1.8.9; Lenth et al., 2023) showed that among children, the 
three-step strategy was more often used on cardinal prob-
lems (M = 46.03%) than on ordinal problems (M = 16.21%); 
z-ratio = 4.89, p < .001. This was also the case for adults: 
the use of the three-step strategy was more frequent on car-
dinal problems (M = 62.50%) than on ordinal problems 
(42.40%); z-ratio = 3.27, p < .01. Hence, the choice of a 
solving strategy in both groups is influenced by the cardinal 
versus ordinal nature of the problem’s quantities.

Finally, we also looked at participants’ preferred strate-
gies to solve the problems depending on the quantities they 
involved. Figure G in the OSM details the rate of use of 
each strategy (as well as the rate of errors and absence of 
response) by adults and children, for the three ordinal and 
the three cardinal quantities. The distribution pattern tended 
to be homogeneous across cardinal problems, as well as 
across ordinal problems, with one exception. Indeed, the 
height problems were the only problems where adults’ rate 
of use of the one-step solving strategy (30.77%) appeared to 
be descriptively lower than that of children (34.76%). While 
this difference was not statistically significant (z-ratio = 
0.61, p = .99), it was nevertheless surprising, as it seems to 

suggest that, as adults progress in their ability to use longer, 
multiple-step strategies (as evidenced by the increase in 
three-step strategy use between fifth grade and adulthood), 
this progression may sometimes be detrimental to their abil-
ity to identify shorter, more effective solving strategies (in 
this case, the one-step strategy). Future work on this issue 
may yield interesting insights into the developmental trajec-
tory of strategy use and height representations.

Analysis of the links between drawings 
and strategies

Third, we looked at how the ordinality of the drawings pre-
dicted which problems would be solved using the one-step 
strategy, independently from the cardinal versus ordinal nature 
of the problems themselves. Because the number of successes 
and failures varied between participants, we used a general-
ized linear mixed model with a binomial distribution to evalu-
ate the extent to which the ordinal drawing score predicted 
participants’ propensity to successfully use the one-step strat-
egy to solve the problems. The cardinal versus ordinal nature 
of the drawings was used as a fixed effect, as was the ordi-
nal drawing score. We used participants as a random effect, 
as well as problem statements, to account for the design’s 
repeated measures (each participant had to attempt to solve 
12 problems). Analysis of the model showed that there was 
a significant effect of the ordinal score of the drawings on 
participants’ rate of use of the one-step strategy, even after 
accounting for the influence of the type of problem (Z = 2.34, 
p < .05). In other words, in accordance with our hypothesis, 

Fig. 9  Children’s and adults’ mean rate of use of the two solving strategies depending on the type of quantities used in the problems
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a higher ratio of ordinal features in the drawings predicted 
higher chances to use the one-step strategy, regardless of 
whether participants were attempting to solve a cardinal or 
an ordinal problem. This effect was not present, however, 
when using the rate of the three-step strategy as the depend-
ent variable of the model (Z = 0.71, p = .48). Interestingly, 
the cardinal scale showed the reverse pattern: a generalized 
mixed model revealed that the cardinality of the drawings had 
a main effect on participants’ likelihood of using the three-
step solving strategy to solve the problems (Z = 2.76, p < .01), 
but not on their propensity to use the one-step strategy (Z = 
0.31, p = .75). In other words, the ordinality of the drawings 
predicted participants’ propensity to find the one-step solving 
strategy, while the cardinality of the productions predicted the 
likelihood of participants using the three-step solving strategy 
instead, regardless of the type of problems to be solved.

Discussion

By resorting to a drawing task coupled with a solving task, 
we were able to gain new insights into children’s and adults’ 
representations of arithmetic word problems. The drawing 
analysis allowed us to get a new, sharper look at participants’ 
conceptualization of cardinal and ordinal problems without 
resorting to explicit verbalization. Drawing analysis sup-
ported the idea that cardinal problems foster representations 
involving sets and unordered collections, whereas ordinal 
problems favor the construction of representations involving 
axes, graduations, and intervals. This was the case for both 
children and adults, which speaks volumes for the pervasive-
ness of the influence of non-mathematical knowledge on 
mathematical reasoning across the lifespan. Indeed, despite 
children’s drawings scoring lower, on average, than adults’ 
drawings on both scales (which we attributed to less detailed 
and more pictorial drawings) the difference between the two 
scores remained unequivocally significant in children’s pro-
ductions on both cardinal and ordinal problems.

Interestingly, the use of these two drawing scales also 
made it possible to compare competing theories regarding 
the representation of arithmetic word problems. Indeed, as 
mentioned in the Introduction, the SECO model (Gros et al., 
2020b) predicts that solvers encode an interpreted structure 
depending on the mathematical and world semantics evoked 
by the problem statement (in our case, a representation 
involving either mostly cardinal features, or mostly ordinal 
features). However, we believe that the two competing theo-
ries that the SECO model challenges would make different 
predictions regarding participants’ drawings in our experi-
ment. According to the Schema model (Kintsch & Greeno, 
1985), learners use the problem statement to extract a propo-
sitional structure that will be used to identify and implement 
a solving schema with the relevant numerical information in 

the problems. This schema then triggers a calculational strat-
egy to find the solution (Kintsch & Greeno, 1985). In other 
words, according to this theory, the propositional structure 
determines the type of representation being constructed, as 
well as the solving strategies used. In this view, participants’ 
representations of the numerical elements in the cardinal 
and ordinal problems should have been linked to the propo-
sitional wording of the problem statements, rather than to 
the entities mentioned in the problems. For instance, when 
describing the difference between Part 1 and Part 3, the 
marble problem used the wording “She has two green mar-
bles less than Paul has red marbles” and the travel problem 
“Fred's trip lasted 2 hours less than Sofia's.” According to 
Kintsch and Greeno’s (1985) theory, both sentences include 
a HAVE-LESS-THAN proposition, which should cue the use 
of the same DIFFERENCE schema. Thus, under the frame-
work of the schema theory, participants’ mental representa-
tion of this difference should be similar in both instances, 
which would result in similar diagrams being used to repre-
sent it in their drawings. Yet, the drawing analysis revealed 
that, contrary to this prediction, this difference tended to be 
represented by an interval in ordinal problems, and by a set 
in cardinal problems (see Gros et al., 2020b, for an in-depth 
discussion of the competing predictions between the schema 
theory and SECO).

Similarly, the Situation Problem Solver model – the other 
competing theory – states that, when reading a problem 
statement, learners construct an episodic situation model 
specific to the problem (Reusser, 1990). This situation model 
is expected to include every functional relation described in 
the problem statement (Johnson-Laird, 2010). This approach 
thus proposes that every problem gives rise to a particular 
interpretation, an idiosyncratic representation. On the other 
hand, SECO suggests that structural regularities emerge in 
the representation of different problems, due to underly-
ing semantic dimensions driving their encoding. In terms 
of problem drawings, the situation model approach would 
certainly predict that different problems elicit different draw-
ings, but it would not predict a consistent difference between 
the drawings of cardinal and ordinal problems. SECO on the 
other hand,

predicts that individuals’ representation of a numerical 
situation tends to highlight either the cardinality of its num-
bers or their ordinality, depending on the world semantics 
attached to the problem statement (Gros et al., 2020b, 2021). 
The drawing analysis showed that diagrams of cardinal prob-
lems did share common structural features that were differ-
ent from the structural features shared by the diagrams of 
ordinal problems.

Additionally, SECO also proposes that individuals’ rep-
resentation of a numerical situation tends to focus either on 
the cardinality of its numbers or on its ordinality, but rarely 
on both (Gros et al., 2021). By looking at the distribution of 
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cardinal and ordinal scores, we were able to assess this pre-
diction in our experiment (see Fig. F in the OSM). Interest-
ingly, among all the recorded answers, no drawing received 
a score equal to or greater than 2 on both scales simultane-
ously. In fact, whenever a drawing's cardinal score exceeded 
2, its ordinal score was consistently zero. Conversely, if the 
ordinal score was 2 or higher, the corresponding cardinal 
score was always less than or equal to 1. This is compat-
ible with the idea that individuals’ representations tend 
to include either cardinal or ordinal features, but not both 
simultaneously.

As for strategy choice, Gros et al.’s (2021) findings were 
replicated in this experiment, since participants in both 
groups tended to use the one-step strategy on ordinal prob-
lems whereas they preferentially used the three-step strategy 
on cardinal problems, regardless of the instructions asking 
them to solve the problems using as few operations as pos-
sible. The fact that those effects could be highlighted with 
fifth graders as well as with adults on the same problems 
speaks to the universality of such encoding constraints. From 
beginner problem solvers to adults with years of experience 
performing small additions and subtractions, the difference 
between cardinal and ordinal problems remained influential.

Finally, and most importantly, the apparent ordinality of 
the drawings made by children and adults was predictive 
of their propensity to use the one-step strategy to solve the 
problems – regardless of whether the problems were cardinal 
or ordinal to begin with. This suggests that the drawings’ 
features that we were attentive to were indeed relevant to 
explain participants’ reasoning process and strategy choice. 
In other words, a drawing featuring axes instead of sets was 
more likely to indicate that children would find the one-step 
strategy, regardless of whether the problem involved cardinal 
or ordinal quantities to begin with. From an educational per-
spective, this is especially interesting, since it suggests that 
the presence of specific features within a student’s drawing 
can reveal the inadequacy of their mental representation of 
the problem and predict their inability to successfully com-
plete a task (in this case, finding the shortest solving strat-
egy). Thus, analyzing students’ drawing productions may 
open the way for targeted interventions aiming at fostering 
a semantic recoding of a suboptimal problem representation.

In addition to the insights gained from studying learners’ 
drawings, the use of a drawing task also made it possible 
to assess the robustness of the semantic congruence effects 
previously described. Indeed, the literature suggests that 
drawing production has several remarkable benefits: draw-
ing tasks have been shown to improve encoding and recall 
(Draschkow et al., 2014; Meade et al., 2018; Roberts & 
Wammes, 2021; Van Meter & Garner, 2005; Wammes et al., 
2016, 2017, 2018), while also helping with understanding 
complex notions (Schmeck et al., 2014), engaging in sci-
entific thinking (Fan, 2015), and learning STEM content 

(Wu & Rau, 2019). Regarding problem solving, research 
indicates that drawing can help students draw crucial infer-
ences, revealing information that was only implicit in the 
problem statement (Cox, 1999; Larkin & Simon, 1987). 
In interventions designed to improve mathematical word 
problem solving, drawing practice has even been shown to 
increase children’s progress (Csíkos et al., 2012; Sharp & 
Shih Dennis, 2017; Van Essen & Hamaker, 1990). In this 
perspective, asking participants to make a drawing of the 
problems they are attempting to solve could have resulted in 
them gaining a finer understanding of the problems’ math-
ematical structure, thus increasing the likelihood that they 
would manage to identify the isomorphism between all the 
problems, and manage to use the one-step strategy on every 
problem, regardless of the quantities they featured. The fact 
that the addition of a drawing task did not make the cardinal/
ordinal effect disappear testifies to the inescapable influence 
of non-mathematical knowledge.

Nevertheless, understanding the determinants of prob-
lems’ representations is a crucial step in identifying the 
potential pitfalls and dead ends born from unsuitable repre-
sentations, as well as helping to develop transfer or learning 
in a school setting (Gros & Gvozdic, 2022). In this perspec-
tive, interventions specifically targeting representational 
change in arithmetic word problems provide rich insights 
into the benefits of representation-oriented teaching (Fis-
cher et al., 2019; Gvozdic & Sander, 2020; Iacono et al., 
2022). From this angle, the use of drawing production may 
be a promising path to promote the semantic recoding of 
a sub-optimal mental representation. Indeed, while insuf-
ficient in this experiment to overcome the cardinal-ordinal 
distinction, drawing tasks could nevertheless constitute one 
of the potential levers that children can use to help promote 
cognitive flexibility in the classrooms. Considering the ben-
eficial influence of drawings as a study material – provided 
that there is adequate instructional support (see Wu & Rau, 
2019 for a discussion) – it might be possible to guide stu-
dents in using drawings to reach a better understanding of 
the mathematical relations depicted in a problem statement.

Beyond that, prompting children to make drawings using 
specific features (e.g., representing a cardinal problem using 
graduated axes), may help target a specific difficulty and 
foster a new problem representation that would be compat-
ible with a better solving strategy. While prompting drawing 
production has sometimes yielded mixed results (see Ver-
schaffel, 2016, for a discussion), this line of interventions 
using teacher-imposed constraints on the drawings has also 
shown encouraging results (Jitendra & Hoff, 1996; Ng & 
Lee, 2005; Verschaffel et al., 2020). More work is needed to 
better understand the role of drawings in promoting repre-
sentational change using systematic drawing analysis. This 
line of research may find renewed inspiration in the recent 
methodological advances leveraging crowd-sourced drawing 
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analysis to get a deeper understanding of their underlying 
mental representations (Bainbridge, 2022). Be it through 
guided or unguided tasks, it is our hope that future research 
will identify the optimal conditions to make the most of 
drawing production, in order to fully harness the thousand 
words’ worth of every drawing.
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